Chi-Square Probabilities
This page features essential tables containing critical values for the Chi-Square ($\chi^2$) distribution. The Chi-Square distribution is a fundamental probability distribution in statistics, particularly important for hypothesis testing involving categorical data or variances. It is characterized by being a continuous probability distribution that is defined exclusively for non-negative values (values $\ge 0$) and is typically skewed to the right. The specific shape of the Chi-Square distribution depends entirely on a single parameter: the degrees of freedom (df).
The degrees of freedom parameter for the Chi-Square distribution varies depending on the specific statistical test being performed. For example, in a Chi-Square goodness-of-fit test with 'k' categories, the degrees of freedom are often $k-1$. In a Chi-Square test of independence for a contingency table with 'r' rows and 'c' columns, the degrees of freedom are $(r-1)(c-1)$. As the degrees of freedom increase, the Chi-Square distribution becomes less skewed and begins to resemble a normal distribution, although it remains defined only for non-negative values.
These tables provide the critical $\chi^2$ values. A critical $\chi^2$ value is a threshold value from the Chi-Square distribution that corresponds to a specific area in the right tail of the distribution. This area represents the chosen significance level, denoted by $\alpha$ (alpha). Common significance levels found in these tables include $\alpha = 0.10, 0.05, 0.025, 0.01, 0.005$. The significance level $\alpha$ represents the probability of committing a Type I error in hypothesis testing – incorrectly rejecting a true null hypothesis.
The tables are typically organized with rows representing different degrees of freedom and columns representing common significance levels ($\alpha$) for the right tail probability. To find the critical $\chi^2$ value for your specific test, you locate the intersection of the row corresponding to the calculated degrees of freedom for your test and the column corresponding to your chosen significance level $\alpha$.
Critical $\chi^2$ values serve as thresholds for decision-making in a variety of widely used statistical tests:
- Chi-Square Goodness-of-Fit Test: Used to determine if an observed frequency distribution of categorical data differs significantly from a hypothesized distribution. The calculated $\chi^2$ statistic from the observed and expected frequencies is compared to the critical value.
- Chi-Square Test of Independence: Used to assess whether there is a statistically significant association between two categorical variables based on data in a contingency table. The calculated $\chi^2$ statistic measures the difference between observed frequencies and frequencies expected under the assumption of independence.
- Tests Concerning Population Variance: Used to test hypotheses about a single population variance ($\sigma^2$) or construct confidence intervals for $\sigma^2$, particularly for normally distributed data.
In hypothesis testing using the Chi-Square distribution, the calculated $\chi^2$ statistic from the sample data is compared to the critical $\chi^2$ value from the table. If the calculated $\chi^2$ statistic is greater than or equal to the critical $\chi^2$ value, the result is considered statistically significant at the $\alpha$ level, leading to the rejection of the null hypothesis.
These tables are indispensable tools in statistics, enabling researchers and analysts to quickly compare their test statistics against established thresholds to draw valid conclusions from their data, particularly when dealing with categorical data analysis and variance testing.
df | 0.995 | 0.99 | 0.975 | 0.95 | 0.90 | 0.10 | 0.050 | 0.025 | 0.01 | 0.005 |
---|---|---|---|---|---|---|---|---|---|---|
1 | --- | --- | 0.001 | 0.004 | 0.016 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
2 | 0.010 | 0.020 | 0.051 | 0.103 | 0.211 | 4.605 | 5.991 | 7.378 | 9.210 | 10.597 |
3 | 0.072 | 0.115 | 0.216 | 0.352 | 0.584 | 6.251 | 7.815 | 9.348 | 11.345 | 12.838 |
4 | 0.207 | 0.297 | 0.484 | 0.711 | 1.064 | 7.779 | 9.488 | 11.143 | 13.277 | 14.860 |
5 | 0.412 | 0.554 | 0.831 | 1.145 | 1.610 | 9.236 | 11.070 | 12.833 | 15.086 | 16.750 |
6 | 0.676 | 0.872 | 1.237 | 1.635 | 2.204 | 10.645 | 12.592 | 14.449 | 16.812 | 18.548 |
7 | 0.989 | 1.239 | 1.690 | 2.167 | 2.833 | 12.017 | 14.067 | 16.013 | 18.475 | 20.278 |
8 | 1.344 | 1.646 | 2.180 | 2.733 | 3.490 | 13.362 | 15.507 | 17.535 | 20.090 | 21.955 |
9 | 1.735 | 2.088 | 2.700 | 3.325 | 4.168 | 14.684 | 16.919 | 19.023 | 21.666 | 23.589 |
10 | 2.156 | 2.558 | 3.247 | 3.940 | 4.865 | 15.987 | 18.307 | 20.483 | 23.209 | 25.188 |
11 | 2.603 | 3.053 | 3.816 | 4.575 | 5.578 | 17.275 | 19.675 | 21.920 | 24.725 | 26.757 |
12 | 3.074 | 3.571 | 4.404 | 5.226 | 6.304 | 18.549 | 21.026 | 23.337 | 26.217 | 28.300 |
13 | 3.565 | 4.107 | 5.009 | 5.892 | 7.042 | 19.812 | 22.362 | 24.736 | 27.688 | 29.819 |
14 | 4.075 | 4.660 | 5.629 | 6.571 | 7.790 | 21.064 | 23.685 | 26.119 | 29.141 | 31.319 |
15 | 4.601 | 5.229 | 6.262 | 7.261 | 8.547 | 22.307 | 24.996 | 27.488 | 30.578 | 32.801 |
16 | 5.142 | 5.812 | 6.908 | 7.962 | 9.312 | 23.542 | 26.296 | 28.845 | 32.000 | 34.267 |
17 | 5.697 | 6.408 | 7.564 | 8.672 | 10.085 | 24.769 | 27.587 | 30.191 | 33.409 | 35.718 |
18 | 6.265 | 7.015 | 8.231 | 9.390 | 10.865 | 25.989 | 28.869 | 31.526 | 34.805 | 37.156 |
19 | 6.844 | 7.633 | 8.907 | 10.117 | 11.651 | 27.204 | 30.144 | 32.852 | 36.191 | 38.582 |
20 | 7.434 | 8.260 | 9.591 | 10.851 | 12.443 | 28.412 | 31.410 | 34.170 | 37.566 | 39.997 |
21 | 8.034 | 8.897 | 10.283 | 11.591 | 13.240 | 29.615 | 32.671 | 35.479 | 38.932 | 41.401 |
22 | 8.643 | 9.542 | 10.982 | 12.338 | 14.041 | 30.813 | 33.924 | 36.781 | 40.289 | 42.796 |
23 | 9.260 | 10.196 | 11.689 | 13.091 | 14.848 | 32.007 | 35.172 | 38.076 | 41.638 | 44.181 |
24 | 9.886 | 10.856 | 12.401 | 13.848 | 15.659 | 33.196 | 36.415 | 39.364 | 42.980 | 45.559 |
25 | 10.520 | 11.524 | 13.120 | 14.611 | 16.473 | 34.382 | 37.652 | 40.646 | 44.314 | 46.928 |
26 | 11.160 | 12.198 | 13.844 | 15.379 | 17.292 | 35.563 | 38.885 | 41.923 | 45.642 | 48.290 |
27 | 11.808 | 12.879 | 14.573 | 16.151 | 18.114 | 36.741 | 40.113 | 43.195 | 46.963 | 49.645 |
28 | 12.461 | 13.565 | 15.308 | 16.928 | 18.939 | 37.916 | 41.337 | 44.461 | 48.278 | 50.993 |
29 | 13.121 | 14.256 | 16.047 | 17.708 | 19.768 | 39.087 | 42.557 | 45.722 | 49.588 | 52.336 |
30 | 13.787 | 14.953 | 16.791 | 18.493 | 20.599 | 40.256 | 43.773 | 46.979 | 50.892 | 53.672 |
40 | 20.707 | 22.164 | 24.433 | 26.509 | 29.051 | 51.805 | 55.758 | 59.342 | 63.691 | 66.766 |
50 | 27.991 | 29.707 | 32.357 | 34.764 | 37.689 | 63.167 | 67.505 | 71.420 | 76.154 | 79.490 |
60 | 35.534 | 37.485 | 40.482 | 43.188 | 46.459 | 74.397 | 79.082 | 83.298 | 88.379 | 91.952 |
70 | 43.275 | 45.442 | 48.758 | 51.739 | 55.329 | 85.527 | 90.531 | 95.023 | 100.425 | 104.215 |
80 | 51.172 | 53.540 | 57.153 | 60.391 | 64.278 | 96.578 | 101.879 | 106.629 | 112.329 | 116.321 |
90 | 59.196 | 61.754 | 65.647 | 69.126 | 73.291 | 107.565 | 113.145 | 118.136 | 124.116 | 128.299 |
100 | 67.328 | 70.065 | 74.222 | 77.929 | 82.358 | 118.498 | 124.342 | 129.561 | 135.807 | 140.169 |